Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582597

RESUMO

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Assuntos
Aldeídos , Citrus , Hesperidina , Citrus/química , Citrus/genética , Citrus/metabolismo , Aminoácidos Aromáticos/metabolismo , Resistência à Doença , Hesperidina/análise , Hesperidina/metabolismo , Hesperidina/farmacologia , Triptofano/metabolismo , Simulação de Acoplamento Molecular , Frutas
2.
Food Chem X ; 21: 101107, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292684

RESUMO

Grapefruit (Citrus × paradisi Macf.) peel, a by-product of the citrus-processing industry, possesses an important economic value due to the richness of bioactive compounds. In this study, boron-linked covalent organic frameworks integrated with molecularly imprinted polymers (CMIPs) were developed via a facile one-pot bulk polymerization approach for the selective extraction of naringenin from grapefruit peel extract. The obtained CMIPs possessed a three-dimensional network structure with uniform pore size distribution, large surface areas (476 m2/g), and high crystallinity. Benefiting from the hybrid functional monomer APTES-MAA, the acylamino group can coordinate with the boronate ligands of the boroxine-based framework to form B-N bands, facilitating the integration of imprinted cavities with the aromatic skeleton. The composite materials exhibited a high adsorption capacity of 153.65 mg/g, and a short adsorption equilibrium time of 30 min for naringenin, together with favorable selectivity towards other flavonoid analogues. Additionally, the CMIPs captured the template molecules through π-π* interaction and hydrogen bonding, as verified by FT-IR and XPS. Furthermore, they had good performance when employed to enrich naringenin in grapefruit peels extract compared with the common adsorbent materials including AB-8, D101, cationic exchange resin, and active carbon. This research highlights the potential of CMIPs composite materials as a promising alternative adsorbent for naringenin extraction from grapefruit peel.

3.
J Fungi (Basel) ; 9(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37755038

RESUMO

Geotrichum citri-aurantii (G. citri-aurantii) is one of the most important postharvest pathogens leading to a postharvest loss of citrus by causing sour rot. In this study, the antifungal activity of trans-2-hexenal, a natural component of essential oil, against G. citri-aurantii was evaluated. Trans-2-hexenal treatment inhibited the mycelia growth of G. citri-aurantii with a minimum inhibitory concentration and minimum fungicidal concentration of trans-2-hexenal at 0.50 and 1.00 µL/mL, respectively. Moreover, trans-2-hexenal efficiently reduced the incidence of sour rot of Satsuma fruit inoculated with G. citri-aurantii. Ultrastructural observations and Fourier transform infrared (FT-IR) results showed that trans-2-hexenal treatment affected the cell wall and cell membrane instructions of G. citri-aurantii. The content of ß-1,3-glucan was significantly decreased after trans-2-hexenal treatment, but the cell wall permeability was not changed. The decrease in lipid and ergosterol contents might be responsible for this antifungal activity. Several important genes, FKS1, ERG1, ERG7, and ERG11, showed decreasing expression levels after trans-2-hexenal treatment. Molecule-docking results also indicated that trans-2-hexenal could join with the protein of FKS1, ERG1, ERG7, and ERG11 to impact enzyme activities. These results demonstrated that trans-2-hexenal is a promising fungicide for controlling sour rot of harvested citrus fruit by damaging the membrane integrity of G. citri-aurantii.

4.
Pestic Biochem Physiol ; 194: 105501, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532321

RESUMO

The volatility of essential oils greatly limits their industrial applications. Here, we successfully prepared γ-cyclodextrin (γ-CD) inclusion compounds (γ-CDTL) containing thymol (TL) for the control of green mold caused by Penicillium digitatum (P. digitatum) in citrus fruit. In vitro experiment showed that the minimum fungicidal concentration (MFC) of γ-CDTL against the hyphae growth of P. digitatum was 2.0 g/L, and 8 × MFC treatment significantly reduced the occurrence of green mold in citrus fruit and had no adverse effect on fruit quality in vivo test compared to prochloraz. Scanning electron microscopy (SEM), x-ray diffraction (XRD), fourier transform-infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), physical properties and sustained release properties were also performed, results indicated that the hydrogen bonds between TL and γ-CD were the basis for the formation of γ-CDTL. We further investigated the inhibition mechanism of γ-CDTL. SEM and TEM experiments showed that γ-CDTL treatment caused severe damage to the hyphal morphology and cells in 30 min and disrupted the permeability of P. digitatum mycelial cell walls by increasing the chitinase activity, thus accelerating the leakage of intracellular lysates. However, the integrity of the cell membrane was obviously damaged only after 60 min of treatment. In conclusion, we prepared a novel inclusion complex γ-CDTL with obvious antifungal effects and preliminarily elucidated its inclusion mechanism and antifungal mechanism. γ-CDTL might be a potent alternative to chemical fungicides for controlling the postharvest decay of citrus.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , gama-Ciclodextrinas , Timol/farmacologia , Antifúngicos/farmacologia , Citrus/química , Citrus/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , gama-Ciclodextrinas/análise , gama-Ciclodextrinas/farmacologia , Fungicidas Industriais/farmacologia , Frutas/microbiologia , Doenças das Plantas/microbiologia
5.
Pestic Biochem Physiol ; 189: 105312, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549824

RESUMO

Previously, wax + cinnamaldehyde (WCA) was proven to be able to effectively alleviate fruit decay and induce resistance in harvested Satsuma mandarin (Citrus unshiu). However, the potential molecular mechanism is largely unknown. In the present study, transcriptomics, metabolomics and biochemical analyses were combined to clarify this process. Transcriptomic analysis revealed that the expression of genes involved in secondary metabolites and related to pathogenesis and the phenylpropanoid pathway were significantly influenced by WCA treatment. In addition, metabolite profiling revealed that metabolites in the phenylpropanoid pathway were also predominantly impacted after WCA treatment. Correspondingly, enzymatic activities and gene expression involved in the phenylpropanoid pathway were positively regulated, especially in the first 24 h, resulting in increased levels of total phenolics, flavonoids and other secondary metabolites. Fruit inoculation experiments showed that WCA treatment significantly reduced the development of citrus green mold and sour rot while having no adverse effects on the edible quality of the tested citrus fruit. Our study confirms the potential role of WCA exposure in citrus to induce resistance through the phenylpropanoid pathway.


Assuntos
Citrus , Citrus/genética , Citrus/química , Citrus/metabolismo , Transcriptoma , Acroleína/farmacologia , Flavonoides/farmacologia , Frutas
6.
J Fungi (Basel) ; 8(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422020

RESUMO

In this study, a γ-cyclodextrin-cinnamaldehyde inclusion compound (γ-CDCL) was prepared to control green mold caused by Penicillium digitatum (P. digitatum) in citrus. The results showed that the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of γ-CDCL against the mycelial growth of P. digitatum were 2.0 g L-1 and 4.0 g L-1, respectively. Simultaneously, eight × MFC γ-CDCL could effectively reduce the incidence of green mold in citrus fruit without impairment of the fruit qualities, meanwhile, eight × MFC γ-CDCL was comparable to Prochloraz in controlling fruit under natural storage conditions. The structure of γ-CDCL was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) analyses. Results showed that the successful preparation of γ-CDCL was due to the spatial interaction between H-4,8 of cinnamaldehyde and H-5' of γ-cyclodextrin. Meanwhile, the cell membrane permeability of P. digitatum was impaired by γ-CDCL through massive accumulation of reactive oxygen species, whereas the cell wall integrity was barely affected. These results indicated that γ-CDCL might inhibit the growth of P. digitatum through a membrane damage mechanism and it is a promising alternative to chemical fungicides in controlling the post-harvest citrus decay.

7.
Curr Res Food Sci ; 5: 2114-2124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387598

RESUMO

Cinnamaldehyde (CA) is a promising antimicrobial agent for the preservation of fruits and vegetables due to its excellent antibacterial activity. The application is however, limited by its unstable and volatile properties. A biocompatible carbon dots hybrid γ-cyclodextrin-based metal organic framework (CD/MOF) was developed by the seed-mediated method to improve the encapsulation and sustained continuous release of CA. CD/MOF-0.5 exhibited a CA loading efficiency of 28.42% and a sustained release duration time of more than 15 days at 8 oC. The release kinetics results showed that the release behavior of CD/MOF-0.5 fitted well with the Korsmeyer-Peppas release kinetics model, indicating that its sustained release is mainly controlled by diffusion. Both the Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that CD/MOF-0.5 and CA molecules were linked by hydrogen bonds. Due to the high sustained release performance, CA-loaded CD/MOF-0.5 considerably inhibited the growth of Escherichia coli, hence preventing the spoilage of fresh-cut cantaloupes. CD/MOF-0.5/CA treatment also maintained the qualities of the fresh-cut cantaloupes, prolonging their edibility to five days. This work provides a promising strategy for the prevention of spoilage in food industry.

8.
J Agric Food Chem ; 70(42): 13787-13795, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36240172

RESUMO

Sour rot caused by Geotrichum citri-aurantii (G. citri-aurantii) is responsible for huge economic losses during citrus fruit storage. However, the availability of chemical fungicides for controlling this disease is rather limited. In the present study, the antifungal activities of 25 oxygenated aromatic compounds against the mycelial growth of G. citri-aurantii were determined, and their corresponding structure-activity relationships were illustrated. Salicylaldehyde (pMIC = 2.689) possessed the strongest inhibitory effect on G. citri-aurantii growth, followed by thymol (pMIC = 2.478) and o-phthalaldehyde (pMIC = 2.429). Molecular electrostatic potential and molecular orbital analysis showed that the antifungal efficiency of test compounds was determined by the number and location of hydroxyl and aldehyde groups and the length of the ester chain. All compounds were selected for quantitative structure-antifungal activity relationship (QSAR) analysis. A three-dimensional-QSAR model of G. citri-aurantii inhibitors was established and demonstrated good predictive capability [comparative molecular field analysis, q2 = 0.532, optimum number of components (ONC) =10, R2 = 0.996, F = 560.325, standard error of estimation (SEE) = 0.034, and two descriptors; comparative similarity index analysis, q2 = 0.675, ONC = 6, R2 = 0.989, F = 263.354, SEE = 0.054, and five descriptors]. QSAR analysis showed that substitution at position 1 with hydrophilic and electron-withdrawing groups produced a hydrogen donor and thus improved the antifungal activity. In contrast, substitution at positions 4 or 5 with hydrophilic and electron-donating groups decreased its antifungal activity. These findings can provide theoretical guidance for preparing effective antifungal drugs for controlling sour rot in citrus.


Assuntos
Citrus , Fungicidas Industriais , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Timol/farmacologia , o-Ftalaldeído , Doenças das Plantas/microbiologia , Geotrichum/química , Citrus/microbiologia , Relação Estrutura-Atividade , Ésteres/farmacologia , Hidrogênio/farmacologia
9.
Plants (Basel) ; 11(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36145768

RESUMO

Chilling injury (CI) caused by exposure to low temperatures is a serious problem in the postharvest cold storage of pepper fruit. Melatonin (MT) has been reported to minimize CI in several plants. To evaluate the effectiveness of MT to minimize CI in green horn pepper and the possible mechanism involved, freshly picked green horn peppers were treated with MT solution at 100 µmol L-1 or water and then stored at 4 °C for 25 d. Results showed that MT treatment reduced CI in green horn pepper fruit, as evidenced by lower CI rate and CI index. MT treatment maintained lower postharvest metabolism rate and higher fruit quality of green horn peppers, as shown by reduced weight loss and respiratory rate, maintened fruit firmness and higher contents of chlorophyll, total phenols, flavonoids, total soluble solids and ATP. Additionally, the contents of hydrogen peroxide, superoxide radical, and malondialdehyde were kept low in the MT-treated fruit, and the activities of the enzymes peroxidase, superoxide dismutase, and catalase were significantly elevated. Similarly, the ascorbate-glutathione cycle was enhanced by elevating the activities of ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, to increase the regeneration of ascorbic acid and glutathione. Our results show that MT treatment protected green horn pepper fruit from CI and maintained high fruit quality during cold storage by triggering the antioxidant system.

10.
J Food Sci Technol ; 59(7): 2776-2783, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35734136

RESUMO

One of the most troublesome postharvest diseases of citrus fruits is sour rot, caused by Geotrichum citri-aurantii. Sour rot reduces the shelf life of the fruits leading to massive economic losses. This study investigated the potential for a combination of cinnamaldehyde and citral (CC; 1: 2, v/v) at reducing the incidence of sour rot postharvest and its possible effect on fruit quality. Our findings show that CC could totally inhibit germination of G. citri-aurantii spores, with the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) both being 0.80 mL L-1. The combination (CC) acted against G. citri-aurantii by targeting the chitin content of the cell wall. Wax + CC (WCC; 1 × MFC) treatment also showed high efficiency in reducing the incidence of sour rot, which was 40% lower than in the control group by day 8 when all the fruits in the latter were rotten. Apart from vitamin c (Vc) content which was higher in the test group than in the control group, WCC treatment did not have any significant effect on the quality of the citrus fruits, the examined fruit quality parameters being weight loss rate, coloration index, firmness, pH, total soluble solid (TSS) content, Vc content, as well as solid acid ratio. These results indicate that the combination of cinnamaldehyde and citral (CC, 1: 2, v/v) can be used as a natural preservative to alleviate the progress of sour rot in citrus fruits postharvest.

11.
Pestic Biochem Physiol ; 179: 104976, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802526

RESUMO

Induced resistance in harvested fruit and vegetables is a superior strategy to reduce postharvest decay. In the present study, Cinnamaldehyde (CA) was applied to investigate for its induced resistance against Penicillium digitatum and Geotrichum citri-aurantii. The results showed that 5250 mg CA/L wax was effective concentration in inducing the resistance of citrus fruit to green mold and sour rot. Wax+ CA (WCA) reduced significantly green mold and sour rot incidences at different exposure times, with 24 h being the optimal exposure time. The host reactions under infection with different pathogens were similar. During initial exposure, treatment with 5250 mg CA/L wax enhanced significantly the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD), polyphenol oxidase (PPO), ß-1, 3-glucanase (GLU) and chitinase (CHT) in the presence of direct contact with the pathogen. Simultaneously, WCA induced an increase in total phenolic, flavanone and dihydroflavonol, flavone and flavonol, and lignin contents. Thus, our results suggest that treatment using 5250 mg CA/L wax can be applied early to control diseases by provoking response reactions in citrus fruit.


Assuntos
Citrus , Penicillium , Acroleína/análogos & derivados , Geotrichum , Doenças das Plantas
12.
J Fungi (Basel) ; 7(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072578

RESUMO

Ergosterol (ERG) is a potential target for the development of antifungal agents against Penicillium digitatum, the pathogen of green mold in citrus fruits. This study examined the mechanism by which citronellal, a typical terpenoid of Cymbopogon nardus essential oil, acts on ergosterol to exhibit its antifungal activity against P. digitatum. We previously reported that citronellal inhibited the growth of P. digitatum with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 1.36 and 2.72 mg/mL, respectively. In citronellal-treated cells, the membrane integrity and ergosterol contents significantly decreased, whereas lanosterol, which serves as a precursor for ergosterol biosynthesis, massively accumulated. Addition of 150 mg/L of exogenous ergosterol decreased the inhibitory rate of citronellal, restoring the ergosterol content and hence the membrane structure to normal levels, and triggered expression of nearly all ERG genes. Based on our findings, we deduce that citronellal damages the cell membrane integrity of P. digitatum by down-regulating the ERG genes responsible for conversion of lanosterol to ergosterol, the key downregulated gene being ERG3, due to the observed accumulation of ergosta-7,22-dienol.

13.
J Food Biochem ; 45(6): e13751, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949723

RESUMO

The emergence of imazalil (IMZ) resistance in Penicillium digitatum has become a great threat for controlling citrus green mold. In this paper, we investigated the antifungal efficiency and mechanism of an alkaloid antofine against an IMZ-resistant P. digitatum strain Pdw03. Results showed that antofine exhibited a strong antifungal activity against the mycelial growth of strain Pdw03, with a minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of 1.56 × 10-3 and 1.25 × 10-2  g/L, respectively. In vivo application of antofine effectively delayed the disease progress and reduced the incidence of green mold in citrus fruit. The disease incidence of 10 × MFC antofine-treated fruit after 6 days of storage was only 11% ± 4%, which was significantly lower than that of the control (100% ± 0%). Antofine treatment altered mycelial morphology of strain Pdw03 without affecting the cell wall integrity. Although the ergosterol contents remained stable, a decrease in the total lipid content induced by lipid peroxidation was observed at 30 min of exposure, indicating disruption of cell membrane permeability of strain Pdw03. In addition, the mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) contents were also decreased at 60 min of exposure. These results indicated that antofine inhibited the growth of strain Pdw03 by disrupting cell membrane permeability and impairing energy metabolism induced by oxidative burst. PRACTICAL APPLICATIONS: One of the most economically important postharvest diseases of citrus fruit is green mold caused by Penicillium digitatum. The pathogen is mainly controlled by using imazalil, but the prolonged and extensive application of this chemical fungicide has led to emergence of numerous IMZ-resistant strains among P. digitatum isolates. Consequently, new and safe strategies for controlling citrus green mold caused by IMZ-resistant P. digitatum strains are urgently needed. In this study, an alkaloid antofine effectively inhibited the growth of IMZ-resistant P. digitatum strain Pdw03 and significantly decreased green mold incidence in the affected citrus fruits. Antofine induced membrane lipid peroxidation of Pdw03 mycelia, resulting in damage to the cell membrane and impairment of energy metabolism. Antofine is therefore a potential antifungal agent for the control of green mold, which provide theoretical guidance for the food industry.


Assuntos
Penicillium , Imidazóis , Indóis , Fenantrolinas , Explosão Respiratória
14.
Food Res Int ; 138(Pt B): 109790, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33288176

RESUMO

Reactive oxygen species (ROS) trigger and accelerate leaf senescence. Melatonin, a low molecular compound with several biological functions in plants, is known to delay leaf senescence in different species, including Chinese flowering cabbage. However, the mechanism(s) underpinning melatonin-delayed leaf senescence remains unclear. Here, we found that melatonin lowered the expression of chlorophyll catabolic genes (BrPAO and BrSGR1) and senescence-associated genes (BrSAG12 and BrSEN4), decreased chlorophyll loss, minimized the alteration in Fv/Fm ratio and remarkably delayed senescence of Chinese flowering cabbage after harvest. Moreover, the over-accumulation of O2•-, hydrogen peroxide (H2O2) and malondialdehyde contents and the expression of respiratory burst oxidase homologues (RBOH) genes (BrRbohB, BrRbohC, BrRbohD, BrRbohD2 and BrRbohE) were significantly inhibited by melatonin treatment. Melatonin-treated cabbages also showed higher O2•-, OH• and DPPH radical scavenging capacity and enhanced activities of peroxidase (POD), superoxide dismutase (SOD) and their gene expressions. Up-regulation of key components of ascorbate-glutathione (AsA-GSH) cycle, the metabolic pathway that detoxify H2O2, was also observed in melatonin-treated cabbages. These findings suggest that melatonin-delayed postharvest leaf senescence of postharvest Chinese flowering cabbage may be mediated, at least in part, by maintaining ROS homeostasis through restraining RBOHs-catalyzed ROS production and enhancing the activity of ROS-scavenging system including major antioxidant enzymes and AsA-GSH cycle.


Assuntos
Brassica , Melatonina , Brassica/genética , Brassica/metabolismo , China , Regulação da Expressão Gênica de Plantas , Homeostase , Peróxido de Hidrogênio , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Front Microbiol ; 10: 55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761105

RESUMO

Our previous study showed that cinnamaldehyde (CA) significantly inhibited the mycelial growth of Geotrichum citri-aurantii, one of the main postharvest pathogens in citrus fruits. This study investigated the antifungal mechanism of CA against G. citri-aurantii. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that CA treatment led to clear morphological changes in the cell walls and membranes of G. citri-aurantii. However, the membrane integrity, total lipids and ergosterol contents were not apparently affected by CA treatment. Notably, the extracellular alkaline phosphatase (AKP) activity was increased after CA treatment, suggesting impairment in cell wall permeability. A weakened fluorescence in the cell wall, a decrease in the chitin contents, and changes of ten genes involved in cell wall integrity were also observed. These results suggested that CA may exhibit its antifungal activity against G. citri-aurantii by interfering the build of cell wall and therefore lead to the damage of cell wall permeability and integrity.

16.
J Microbiol Biotechnol ; 30(6): 878-884, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32160698

RESUMO

Penicillium digitatum and P. italicum are the two important postharvest pathogens in citrus, causing about 90% of the total loss of citrus fruit during storage and transportation. Natural fungicides such as essential oils have been widely used instead of chemical fungicides for preventing and controlling postharvest diseases. In this research, p-anisaldehyde exhibited a strong inhibitory effect on P. digitatum and P. italicum, with the minimum inhibitory concentration and minimum fungicidal concentration values of both being 2.00 µl/ml. Additionally, p-anisaldehyde visibly inhibited both the green mold and blue mold development of citrus fruits inoculated with P. digitatum and P. italicum. The mycelia morphologies of these pathogens were greatly altered, and the membrane permeability and cell wall integrity of mycelia were severely disrupted under p-anisaldehyde treatment. These results suggest that the antifungal activity of p-anisaldehyde against P. digitatum and P. italicum can be attributed to the disruption of the cell wall integrity.


Assuntos
Antifúngicos/farmacologia , Benzaldeídos/farmacologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Penicillium/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Parede Celular/ultraestrutura , Citrus/microbiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Micélio/efeitos dos fármacos , Micélio/ultraestrutura , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
17.
Food Chem ; 277: 414-422, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30502165

RESUMO

Herein, the dosage effect of limonene on the P. digitatum spore germination and its regulatory mechanisms were investigated. Results showed that limonene only at low concentrations displayed a stimulatory role, with the optimal concentration being 0.25 µL/mL. GC-MS and GC analysis revealed that limonene contents remained relative stable and no evidence of transformation was observed at stimulatory concentrations. Metabolomics analysis showed that 61 metabolites including organic acids, amino acids, sugars, nucleosides, fatty acids, and their derivatives, were significantly changed (P < 0.05), suggesting the transitions between soluble sugars and energy-related metabolisms. Proteomic analysis demonstrated that proteins in energy-related pathways and ROS homeostasis were also influenced. These were further confirmed by the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST), the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and glutathione (GSH). Our present research indicates that ROS homeostasis is involved in the limonene induced spore germination of P. digitatum.


Assuntos
Limoneno/farmacologia , Penicillium/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Citrus/efeitos dos fármacos , Citrus/microbiologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Metabolômica , Penicillium/metabolismo , Análise de Componente Principal , Proteômica , Esporos Fúngicos , Superóxido Dismutase/metabolismo
18.
Front Microbiol ; 9: 239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503638

RESUMO

Citral exhibits strong antifungal activity against Penicillium digitatum. In this study, 41 over-expressed and 84 repressed proteins in P. digitatum after 1.0 µL/mL of citral exposure for 30 min were identified by the iTRAQ technique. The proteins were closely related with oxidative phosphorylation, the TCA cycle and RNA transport. The mitochondrial complex I, complex II, complex III, complex IV and complex V, which are involved in oxidative phosphorylation were drastically affected. Among of them, the activities of mitochondrial complex I and complex IV were apparently suppressed, whereas those of mitochondrial complex II, complex III and complex V were significantly induced. Meanwhile, citral apparently triggered a reduction in the intracellular ATP, the mitochondrial membrane potential (MMP) and glutathione content, in contrast to an increase in the glutathione S-transferase activity and the accumulation of reactive oxygen species (ROS). Addition of exogenous cysteine decreased the antifungal activity. In addition, cysteine maintained the basal ROS level, deferred the decrease of MMP and the membrane damage. These results indicate that citral inhibited the growth of P. digitatum by damaging oxidative phosphorylation and cell membranes through the massive accumulation of ROS.

19.
World J Microbiol Biotechnol ; 34(2): 29, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29350302

RESUMO

This study investigated the potential anti-fungal mechanisms of sodium dehydroacetate (SD) against Geotrichum citri-aurantii. The results showed that the cell wall integrity of G. citri-aurantii was not affected, whereas the membrane permeability of G. citri-aurantii mycelia was visibly altered by SD. Dramatic morphological changes of the mycelia, such as loss of cytoplasm, plasmolysis, and dissolution of intracellular substances, were observed by scanning electron microscopy and transmission electron microscopy analyses, indicating that the mycelium is severely damaged by the SD treatment. Furthermore, SD apparently induced a decrease in the intracellular ATP content before 30 min of exposure. An increase in the activity of the Na+/K+-ATPase was also observed, indicating that Na+ ions might enter the cell and thus disturb the energy supply. Taken together, this study's findings suggest that the anti-fungal activity of SD against G. citri-aurantii can be attributed to the disruption of cell membrane permeability and energy metabolism.


Assuntos
Antifúngicos/farmacologia , Geotrichum/citologia , Geotrichum/efeitos dos fármacos , Pironas/farmacologia , Nucleotídeos de Adenina/metabolismo , Adenosina Trifosfatases/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Citrus/microbiologia , Citoplasma/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Micélio/citologia , Micélio/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Doenças das Plantas/microbiologia , Potássio/metabolismo , Sódio/metabolismo
20.
J Sci Food Agric ; 98(2): 527-533, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28620947

RESUMO

BACKGROUND: Green mould caused by Penicillium digitatum is the most damaging postharvest diseases of citrus fruit. Cinnamaldehyde (CA) is a food additive that has potential use in controlling postharvest disease of fruits and vegetables. In this study, the effectiveness of wax with CA (WCA) in controlling Ponkan (Citrus reticulata Blanco) green mould was investigated. RESULTS: The mycelial growth of P. digitatum was inhibited by CA in a dose-dependent manner. The minimum inhibitory concentration and minimum fungicidal concentration (MFC) were both 0.50 mL L-1 . In vivo tests demonstrated that WCA (1 × and 10 × MFC) applied to Ponkan fruits inoculated with P. digitatum could significantly decrease the incidence of green mould for up to 5 days. The WCA treatment increased the activities of catalase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, polyphenol oxidase, as well as the total phenols and flavonoids contents. Meanwhile, the treatment remarkably decreased the weight loss rate of fruits and maintained fruit quality. These results indicated that WCA treatment might induce defence responses against green mould in citrus fruit. CONCLUSION: Our findings suggest that WCA might be a promising approach in controlling green mould of citrus fruits. © 2017 Society of Chemical Industry.


Assuntos
Acroleína/análogos & derivados , Citrus/microbiologia , Fungicidas Industriais/farmacologia , Penicillium/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Ceras/farmacologia , Acroleína/química , Acroleína/farmacologia , Citrus/química , Flavonoides/análise , Frutas/química , Frutas/microbiologia , Penicillium/crescimento & desenvolvimento , Fenóis/análise , Doenças das Plantas/microbiologia , Ceras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...